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Abstract

We describe exact inference based on group-invariance assumptions that specify various forms of symmetry in the

distribution of a disturbance vector in a general nonlinear model. It is shown that such mild assumptions can be

equivalently formulated in terms of exact confidence sets for the parameters of the functional form. When applied to the

linear model, this exact inference provides a unified approach to a variety of parametric and distribution-free tests. In

particular, we consider exact instrumental variable inference, based on symmetry assumptions. The unboundedness of

exact confidence sets is related to the power to reject a hypothesis of underidentification. In a multivariate instrumental

variables context, generalizations of Anderson–Rubin confidence sets are considered.
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1. Introduction

There is a large literature that tackles departures from standard asymptotics in an instrumental variables
(IV) context. Recent theoretical contributions, with further references, can be found in Bekker (1994), Staiger
and Stock (1997), Wang and Zivot (1998), Zivot et al. (1998), Donald and Newey (2001), Hahn and Hausman
(2002), Kleibergen (2002, 2004) and Moreira (2001, 2003). In particular, Nelson and Startz (1990a, b)
considered the bimodality of the finite-sample distribution of the IV-estimator in the presence of a single
instrument. Especially when the instrument is weak, in the sense of not being highly correlated with the
regressor, when the degree of endogeneity is high, or when the number of observations is small, the asymptotic
distribution may be a particularly poor approximation to the true distribution (additional details are provided
by Woglom, 2001). An understanding of the empirical importance of weak instruments in econometrics stems
from Angrist and Krueger’s (1991) study of returns to education, and the discussion of their results by Bound
et al. (1995). See also Imbens and Rosenbaum (2005), who examine permutation methods, and links with IV
e front matter r 2007 Elsevier B.V. All rights reserved.
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tests when instruments are weak, with an application to the Angrist and Krueger (1991) data set. Good
surveys of the weak instrument literature are Stock et al. (2002) and Hahn and Hausman (2003). In this paper,
we consider a general distribution-free approach to exact inference, with particular emphasis on (weak) IV.

Instead of considering a specified parametric family of densities for the disturbances, we examine a variety
of nonparametric assumptions based on three basic types of symmetry in the distribution of the disturbance
vector. Such group-invariance assumptions can be very mild. (a) The exchangeability assumption, based on
the permutation group, is weaker than assuming that the disturbances are independent and identically
distributed (iid). In fact, it also covers the case where sampling is performed without replacement. (b) Another
group-invariance assumption, based on the reflection group, covers the heteroscedastic case, where the
disturbances are assumed to be independent with symmetric distributions. This is weaker than the classical
parametric assumption of iid Gaussian disturbances. (c) However, the assumption of iid Gaussianity can also
be related to group invariance by considering the infinite group of rotations.

Furthermore, based on such assumptions, the paper presents exact inference on the parameters of the
functional form. The inference is formulated in terms of exact confidence sets whose validity does not depend
on the number of observations. So, contrary to asymptotic approximations, the approach may be applied
locally, based on very few observations. Moreover, the inference is shown to be equivalent to the assumptions
of the model if the group-invariance assumption is based on a finite group. In that case, the assumptions are
necessary and sufficient for the inference to hold true. In particular, we consider such ‘assumption-equivalent’
inference in the linear model in an instrumental variable setting.

An important special case is given by linear regression, and as a first illustration consider the simple model

yi ¼ aþ bxi þ ui; i ¼ 1; . . . ; n.

Let the elements yi, xi and ui be collected in n-vectors y, x and u, respectively, and let Pj, j ¼ 1; . . . ; n!� 1,
represent all n� n permutation matrices that are different from the identity matrix In, so that Pjx contains the
elements of x in a different order. Let Pjxax, and consider points

cj ¼
x0ðIn � PjÞy

x0ðIn � PjÞx
; j ¼ 1; . . . ; n!� 1,

such that the real line is partitioned into n! disjoint subsets Bk. It will be shown that the assumption that states
that the elements of u are iid, and independent of x, is sufficient for exact inference that states that the
probabilities for the n! events b 2 Bk are all equal. Consequently, the sets Bk form elementary confidence sets
for b. In fact, this inference is essentially equivalent to the assumption that says that the distribution of u is not
affected by a reordering of its elements. A general formulation of this result, applicable to assumptions related
to other groups of transformations, will be derived in the next section without reference to estimation or
testing procedures.

This paper provides a unified approach to exact inference in the linear model under a variety of
nonparametric assumptions. Many nonparametric statistical techniques, and early nonparametric inference in
econometrics, can be recognized as special cases of our general framework, and some of these settings are
briefly discussed. Descriptions of such distribution-free methods can be found in, inter alia, Hájek (1969),
Lehmann (1975), Dawid (1988) and Maritz (1995). However, our main interest in this paper is in applications
in an IV context.

For the general instrumental variable case, as considered here, inference becomes more complicated than it
is for the linear regression. That is, inference on a single parameter remains assumption-equivalent, but the
exact confidence regions need no longer be convex, symmetric or bounded. In particular, we study the
possibility of unbounded confidence sets. The probability of unboundedness is shown to be related to the
power of the ‘first-stage regression’ to reject a hypothesis of under-identification.

Following the main result in Section 2, we focus on inference on a single parameter, and distinguish between
two cases. First, in Section 3, monotonic inference is considered, which allows for one-sided inference, and
where there are no complications due to unbounded confidence sets. Second, in Section 4, we assess inference
based on a single instrument, which is nonmonotonic in general. We then discuss problems of interpretation
that are related to exact confidence sets whose boundedness is not guaranteed. In Section 5, we explore joint
confidence regions and inference based on more than one instrument. We describe nonparametric
Please cite this article as: Bekker, P.A., Lawford, S., Symmetry-based inference in an instrumental variable setting. Journal of
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generalizations of Anderson–Rubin (AR) confidence sets and examine dynamic and nonlinear models.
Section 6 concludes the paper.

2. Symmetry and exact inference

We consider nonparametric assumptions on the distribution of a disturbance vector. That is, instead of
restricting the distribution to a parametric family, the distribution will be assumed to satisfy only a symmetry
property. The mathematical expression of symmetry is invariance under a suitable group of transformations.
First, we consider finite groups.

2.1. Symmetry assumptions based on finite groups

Based on elementary properties of finite groups, we begin by describing a result that can be formulated
without using probability. Let the finite set P ¼ fP0;P1; . . . ;PNg of n� n matrices be closed under the
formation of products and inverses, so that P is a finite transformation group of order N þ 1. The identity
matrix In is an element, which will be denoted by P0. Such a group defines an equivalence relation between
n-vectors � and ��, i.e. ���� ðmodPÞ if � ¼ P�� and P 2 P. An equivalence class, or ‘orbit’, will be denoted by
C� ¼ f�;P1�; . . . ;PN�g. Notice that C� ¼ C�� if ���� ðmodPÞ. Examples of such finite groups are given
by permutation matrices, where P� contains the elements of � in a different order, and N ¼ n!� 1; and by
reflection matrices, which are diagonal with diagonal elements equal to either 1 or �1, and N ¼ 2n � 1.
A combination, containing both permutations and reflections, is formed by the permutation-reflection group
where N ¼ n!2n � 1. Subgroups will also be considered. For example, if the elements of � are stratified,
permutations within strata form a subgroup, which can be achieved by block-diagonal permutation matrices.1

Let gð�Þ be a scalar inferential function. Then, the range of gð�Þ with domain C�, i.e.

Rðgð�ÞÞ � fgðP�ÞjP 2 Pg,

is the reference set of gð�Þ. From the group structure, RðgðP�ÞÞ ¼ Rðgð�ÞÞ if P 2 P. This property, and
Condition 1, make it possible to formulate assumption-equivalent inference.

Condition 1. All elements of the reference set Rðgð��ÞÞ are different, i.e. gðPi�ÞagðPj�Þ for all i; j 2 f0; 1; . . . ;Ng
and iaj.

Consequently, if Condition 1 is satisfied, there is a one-to-one correspondence between the elements of C��

and the elements of Rðgð��ÞÞ. If we define2

F ð�Þ � #fPjgð�ÞogðP�Þ;P 2 Pg,

with range U ¼ f0; 1; . . . ;Ng, then the mapping F :C�� ! U is one-to-one. Conditional on � 2 C�� , where
Condition 1 is satisfied, the following two statements are equivalent:

� ¼ Pi�
�, ð1Þ

F ð�Þ ¼ F ðPi�
�Þ. ð2Þ

The interpretation of this equivalence becomes clearer in an econometric context, where � is a random
disturbance vector. In particular, we consider disturbances specified as

� ¼ f ðy;X ; b0Þ,

where the functional form f ðy;X ; bÞ is a known function of both observable variables ðy;X Þ and a parameter
vector b. We will use the short notation F ðbÞ instead of F ðf ðy;X ;bÞÞ.

An assumed symmetry property of the distribution of � amounts to a group-invariance assumption which
states that � and P� have the same distribution if P 2 P. When conditioned on equivalence classes C�� , where
Condition 1 is satisfied, such a group-invariance assumption states that the conditional distribution of � is
1We use ‘strata’ in a standard statistical sense, see e.g. Imbens and Rosenbaum (2005), Section 3.1 for further details.
2Similar to the generalized Bell–Pitman statistic, given by 1� F ð�ÞðN þ 1Þ�1, cf. Dawid (1988).
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uniform over C�� . From the equivalence of (1) and (2), we find that the group-invariance assumption holds,
conditional on C�� , if and only if the conditional distribution of F ðb0Þ is uniform over U. The latter amounts
to exact assumption-equivalent inference on b0. Our findings are summarized as follows.

Proposition 1. Conditional on an equivalence class, where Condition 1 is satisfied, a group-invariance assumption

stating that � is uniformly distributed over C�� is equivalent to inference on b0 that says that F ðb0Þ is distributed

uniformly over U. If Condition 1 holds almost surely (a.s.), then a group-invariance assumption implies that the

marginal distribution of F ðb0Þ is uniform over U.

If F ðb0Þ is indeed uniformly distributed overU, the function F ðbÞ can be used to construct exact (as opposed
to approximate asymptotic) confidence sets for b0:

CðVÞ � fbjF ðbÞ 2V � Ug; (3)

with size Probðb0 2 CðVÞÞ ¼ #V=#U. If V consists of a single element, CðVÞ is called an elementary

confidence set.
Due to computational problems, it may be difficult to implement this inference in practice if N is a large

number. However, as is shown in the Appendix, exact inference can also be formulated based on a random
sample of matrices P 2 P. The function F ðbÞ, based on this random sample, can be computed for a grid of
values for b. Confidence sets can then be constructed by trial and error, i.e. b 2 CðVÞ if F ðbÞ 2V. In some
cases, inference on a single element of the parameter vector can also be formulated by computing confidence
limits directly. These are the bounds of one-dimensional elementary confidence sets.
2.2. Symmetry based on the infinite orthonormal group

The set P of n� n orthonormal matrices P, with P0P ¼ PP0 ¼ In, forms an infinite group. Nevertheless, an
infinite group-invariance assumption implies exact inference conditional on an equivalence class, and therefore
also unconditionally. The group-invariance assumption now says that the vector � can be rotated without
affecting its distribution. So, � is assumed to have a spherically symmetric distribution3: it depends only on �0�.
A rotational-invariance assumption implies permutation-reflection invariance. If the elements of � are also
assumed to be independent, rotational-invariance amounts to Gaussianity.

Let fP1; . . . ;PNg be a random sample taken from P and let P0 ¼ In. That is, for any �, the elements of
fP1�; . . . ;PN�g are assumed to be independently uniformly distributed over the surface of the sphere with
radius ð�0�Þ1=2. Thus, � and P1�, say, have identical distributions. If we further condition on an equivalence
class � 2 C�� ¼ fP��jP 2 Pg, then � and P1� are also independent. Consequently, conditional on C�� , the
random vectors Pi�, and gðPi�Þ, i ¼ 0; 1; . . . ;N will be iid. Hence, F ðb0Þ�UðUÞ, where

F ðb0Þ ¼ #fijgð�ÞogðPi�Þ; i ¼ 1; . . . ;Ng, (4)

which holds conditionally and unconditionally. We may also consider infinite subgroups where the rotational
symmetry applies to linear subspaces.
3. Monotonic inference and some applications

Exact inference as formulated in Proposition 1 is not unique. Each choice of inferential function gð�Þ that
satisfies Condition 1, a.s., provides exact inference. Such inferences can be distinguished based on aspects of
the shape of the random function F ðbÞ. That is to say, F ðbÞ should ideally allow relevant confidence sets to be
bounded, convex and nonempty a.s. For this reason, we pay particular attention to inference on a single
parameter based on linear inferential functions. We then distinguish between monotonic inference, where F ðbÞ
is a monotonic function with range U, and nonmonotonic inference. Section 5 also discusses nonlinear
inferential functions.
3The argument can easily be generalized to elliptical distributions.
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3.1. Monotonic inference

Inference based on F ðb0Þ�UðUÞ is monotonic if b is a scalar and F ðbÞ is a monotonically increasing function
ranging from F ð�1Þ ¼ 0 to F ð1Þ ¼ N. Then, ‘assumption-equivalent’ inference amounts to the formulation
of an ordered collection of N þ 1 elementary convex sets that partition the real line. Using notation (3), these
elementary confidence sets can be denoted CðfigÞ, i ¼ 0; 1; . . . ;N. Their coverage probabilities are all equal to
ðN þ 1Þ�1. The following is a simple illustration of monotonic inference.4

Consider the example used in the Introduction:

� ¼ y� b0x ¼ ain þ u, (5)

where in is an n-vector of ones. The distribution of �, conditional on x, is assumed to be invariant under
permutations of its elements. Therefore, � and P� have the same distribution if P 2 P, where P is the
permutation group of n� n matrices. Let gð�Þ ¼ x0� and assume that Condition 1 is satisfied a.s. This implies,
for i ¼ 1; . . . ; n!� 1, that Pixax and, since Pi is orthogonal,

x0ðIn � PiÞx ¼
1
2
x0½ðIn � PiÞ þ ðIn � PiÞ

0
	x ¼ 1

2
x0ðIn � PiÞðIn � PiÞ

0x40. (6)

Consequently, assumption-equivalent inference amounts to F ðb0Þ�UðUÞ, where
5

F ðbÞ ¼ # i
x0ðIn � PiÞy

x0ðIn � PiÞx
ob; i ¼ 1; . . . ;N

����� �
, (7)

and N ¼ n!� 1. Here we need not construct confidence sets by trial and error. Instead, we can compute
confidence limits ci directly:

ci ¼
x0ðIn � PiÞy

x0ðIn � PiÞx
; i ¼ 1; . . . ; n!� 1. (8)

We may also consider a random sample of these limits, as described in Appendix A.6

We find for monotonic inference that elementary confidence sets are nonempty and convex, and that only
Cðf0gÞ and CðfNgÞ are unbounded. Due to the ordering of the elementary confidence sets, one-sided inference
can be formulated based on confidence sets CðVÞ, or their complements, where V ¼ fj; . . . ;Ng. Two-sided
inference can be based on confidence sets given by

Sj ¼ CðVjÞ;

Vj ¼ fj; . . . ;N � jg; 0pjpN=2. (9)

So, we find that

Prob ðb0 2SjÞ ¼ 1� aj,

aj ¼ 2jðN þ 1Þ�1 ¼ 1� #Vj=#U. (10)

For monotonic inference, the sets Sj are convex, nonempty and also bounded for j40. Moreover, they are
symmetric, which is of some importance when interpreting the sets Sj. In particular, the median of the N

confidence limits—with some tolerance if N is even—has a distribution whose median coincides with b0.
Therefore, similar to the Hodges–Lehmann estimator (cf. Hodges and Lehmann, 1963; or Lehmann, 1975,
4Such inference is related to distributional inference as discussed by Kroese and Schaafsma (1998), who consider optimality in terms of

proper loss functions based on the difference between random distribution functions GðbÞ, where Gðb0Þ�Uð½0; 1	Þ, and the indicator

function of ½b0;1Þ.
5Note that gð�ÞogðP�Þ as x0�ox0P� as x0ðIn � PiÞyox0ðIn � PiÞxb, and (7) follows from property (6). Here, gð�Þ � gðP�Þ ¼ x0ðIn � PÞu,

and so permutation based inference for b is independent of a.
6The inference described here may perhaps be seen as similar to Monte Carlo methods such as the bootstrap, which is a technique for

estimating the finite-sample distribution of a statistic, or a feature thereof, by data resampling. Bootstrap estimation provides an

approximation to exact finite-sample methods (e.g. approximation of a distribution function), and is usually justified by asymptotic

arguments under suitably general conditions. By contrast, the methods in this paper lead to exact inference, whether based on the complete

groupP, or a random sample fromP. See Robinson (1987) for comparison of several bootstrap confidence intervals as approximations to

exact intervals derived from inversion of exact permutation tests.
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p. 82), this median is a median-unbiased estimator of b0. In other words, Sj has coverage probability 1� aj for
scalar b0, and a median-unbiased estimator bbmed, in the scalar monotonic case, is given by bbmed ¼ limaj!1Sj.
See Andrews (1993) and Andrews and Phillips (1987) for some discussion of median-unbiasedness in
econometrics, and (Lehmann, 1997, Section 3.5) for an introduction.

Graphically, the inference can be represented by an ‘F-plot’, where F ðbÞ is plotted against b. An alternative
two-sided representation is given by a P-plot, or ‘confidence pyramid’, as used by Gabriel and Hall (1983) and
Tritchler (1984), where the two-sided confidence regions are stacked on top of each other. That is, consider
values PðbÞ7:

PðbÞ ¼ maxfajjb 2Sj ; j ¼ 0; . . . ;Ng ¼
N

N þ 1
1� 1�

2F ðbÞ
N

���� ����� �
. (11)

Then, H0: b ¼ b0 would be rejected at significance level aj, (i.e. b0eSj), if and only if aj4Pðb0Þ. So, PðbÞ
provides a representation of the sets Sj :

Sj ¼ fbjPðbÞXajg. (12)

As an example of monotonic inference based on model (5), where F ðbÞ takes the form (7), consider iid data
generated as follows: �i ¼ ðw1 þ w2

2 þ 3Þ2i and xi ¼ j log jw3=w4jj, where for each i ¼ 1; . . . ; 10; independently,
w�Nð0; I4Þ; b0 ¼ 1. Fig. 1 gives a P-plot based on 1000 randomly chosen permutations, and a median-
unbiased estimate bbmed4b0.

The assumption-equivalent inference developed here is exact, for all sample sizes n, irrespective of the
number of random samples taken from the (permutation or other) group P. Clearly, a ‘reasonable’ subsample
size will depend upon the computing resources available, and the context, and will likely be case-dependent. As
an illustration, we performed a small study, using the model following Eq. (12). We construct confidence sets
Sj for n ¼ f10; 25g, using N ¼ 10 000 random n� n permutation matrices, where aj 2 f0:05; 0:10; 1:00g. The
procedure was repeated 200 times, and we recorded the empirical mean and standard deviation of the lower
7An alternative would be to use p-values: minfaj jbjeSj ; j ¼ 1; . . . ;Ng.
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and upper bounds of the confidence sets with 95% and 90% coverage, and the median-unbiased estimate bbmed.
We found that reasonable accuracy is achieved (in terms of small variability across samplings from P), even
for small samples, and especially for the median-unbiased estimate. For instance, the 90% interval for n ¼ 25
is given by ð�3:34; 7:06Þ, with estimated standard errors 0:067 and 0:061 on the bounds. In a practical
application, N could be increased considerably. For the same model, we constructed P-plots, using different
subsamples from P, where N 2 f10; 100; 500; 1000; 2500; 10 000g. It appears that N as small as 1000 gives quite
accurate inference in this example (although all display exact inference).

3.2. Some special cases

Exact inference based on confidence limits (8) was derived by Gabriel and Hall (1983) and Maritz (1995) by
inversion of permutation tests.8 Based on asymptotic conditions, the difference between this nonparametric
inference and Gaussian inference frequently becomes negligible even for modest values of n. However, if the
regression is applied locally, e.g. as a building block for nonparametric regression, based on very few
observations, then differences may be seen. Another case arises when asymptotic conditions are not well
satisfied, such as when two samples are compared, one of which is small (for example, Wilcoxon’s two-sample
test, or similarly the Mann–Whitney test, easily fit within the present framework). We now give some examples
to illustrate how the group-invariance framework can provide a unified treatment of various different
problems.

Example 1 (Permutation). The question is whether the permutation argument can also be applied in a general
multiple regression context:

y ¼ xbþ X 2gþ u ¼ xbþ �, (13)

where the elements of u are exchangeable. In that case, the matrices Pi should satisfy the additional condition
ðIn � PiÞX 2 ¼ 0, in order to filter out the effect of the variables X 2. In other words, the transformations Pi

should affect the vector x, i.e. Pixax, but they should leave the matrix X 2 unaffected, i.e. PiX 2 ¼ X 2. In order
to achieve this, the permutations should be performed between observations where the variables in X 2 are
constant. In particular, if X 2 consists of dummy variables, defining strata, this nonparametric approach is
applicable by using a subgroup consisting of block-diagonal permutation matrices. In case X 2 does not consist
of dummy variables, then joint confidence sets for the parameters in b and g might be formulated as described
in Section 5.

Example 2 (Reflection). Another well-known application relates to the central location of symmetric
distributions. Let y ¼ bin þ � (in fact, it is only necessary that the constants multiplying b are different from
zero), and let P be the reflection group. From the independence and the symmetry of the distributions, � and
P� have the same distribution if P 2 P. So, if we use gð�Þ ¼ i0n� as an inferential function, and assume that
Condition 1 is satisfied, we find using similar techniques to above that F ðb0Þ will be uniformly distributed over
U, where N ¼ 2n � 1 and

F ðb0Þ ¼ # i
i0nðIn � PiÞy

i0nðIn � PiÞin

���� ob; i ¼ 1; . . . ; 2n � 1

� �
.

This holds as i0nðIn � PiÞin40, as n ¼ i0nin4i0nPiin. Since Pi 2 P (reflection group), i ¼ 1; . . . ;N ; is diagonal,
i0nPiin ¼ traceðPiÞ. Noting that the diagonal elements of PiaIn are either 1 or �1, it follows directly that,
traceðPiÞon. The set of confidence limits is now given by the means of all 2n � 1 subsets of fy1; . . . ; yng. Maritz
(1995) derives these limits based on a permutation argument used by R.A. Fisher. A discussion of the Fisher
randomization test is given in Basu (1980).

Example 3 (Rotation). Perhaps the most well-known example is given by the assumption of rotational
invariance in the context of linear regression. Consider the multiple regression equation (13). Now assume that
the conditional distribution of u, given ðx;X 2Þ: n� ðk þ 1Þ, is spherical. Then, the distribution of � is not
8In an experimental context, given similar assumptions with respect to x instead of �, exact inference of the form (10) would still be valid.
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affected by rotations over a linear subspace. That is, let PX2
¼ X 2ðX

0
2X 2Þ

�1X 02, and let L be an n� ðn� kÞ

orthonormal complement of X 2, i.e. L0X 2 ¼ 0 and L0L ¼ In�k. Now, consider the set

P ¼ fPjP ¼ PX2
þ L ~PL0; ~P

0 ~P ¼ In�kg,

where ~P is ðn� kÞ � ðn� kÞ. Clearly, P forms a group, and PX 2 ¼ X 2, so that P� ¼ X 2gþ Pu, for any
P 2 P. Consequently, � satisfies the group-invariance assumption ��P� for P 2 P. As a result, F ðb0Þ
as given in (4) will be uniformly distributed over U. If we use gð�Þ ¼ x0� as an inferential function,
we find confidence limits similar to those found for the other group-invariance assumptions. In fact, the
inference converges to classical inference based on the tn�k�1-distribution as N !1, which agrees with Efron
(1969).

Proposition 2 (Bekker, 2002). Let P ¼ PX2
þ L ~PL0, where, for any v 2 Rn�k, ~Pv is distributed uniformly over

the surface of the sphere with radius ðv0vÞ1=2. Then, for any a 2 R,

Prob ao
x0ðIn � PÞy

x0ðIn � PÞx

����x; y� �
¼ Probðaob̂þ seðb̂Þtn�k�1jx; yÞ,

where tn�k�1 is distributed as Student’s t with n� k � 1 degrees of freedom; and b̂ and seðb̂Þ are the ordinary least

squares estimator and its standard error, respectively.

Therefore, traditional exact inference, based on Gaussianity, fits within the present framework. Bekker
(2002) also uses the present approach to describe ‘optimal’ exact inference—based on a minimum variance
argument—in the case of groupwise heteroscedasticity, where homoscedasticity is restricted to strata.9 For
such a (feasible) WLS context, inference based on maximum likelihood is only approximate.

3.3. Measurement errors and monotonic inference

Another special case of monotonic inference is related to Wald’s (1940) problem of fitting straight lines if
both variables (y and x in (5)) are subject to error. Wald’s approach was based on the assumption that iid
errors in x did not affect its ranking. Aigner et al. (1984, p. 1339) describe Wald’s method as an IV technique
with classification dummy variables as instruments. In fact, Theil (1950) provided exact confidence limits for
b0 (cf. Lehmann, 1975, p. 312; Maritz, 1995) given by

yi � yj

xi � xj

; ioj; i; j ¼ 1; . . . ; n. (14)

However, the resulting 1þ
Pn�1

k¼1k ¼
1
2
nðn� 1Þ þ 1 confidence intervals do not have equal coverage

probabilities. Maritz (1995) gives a simple representation of the distribution and, in a different context, it
has been described by Kendall (1938, 1975) and Mann (1945). Here we can show there is another part to the
story.

The assumption that the errors do not affect the rank numbers of x can be used to define an inferential
function gð�Þ ¼ r0�, where r contains the rank numbers of x. This ranking can be considered as an instrument.
Due to the errors, � and x are correlated. However, conditional on r, � satisfies the exchangeability assumption.
Furthermore, since all elements of x are different, Condition 1 is satisfied, and for all permutation matrices
PaIn we find r0ðIn � PiÞx40. Consequently, F ðb0Þ�UðUÞ, where

F ðbÞ ¼ #fijgð�ÞogðPi�Þ; i ¼ 1; . . . ; n!� 1g

¼ # i
r0ðIn � PiÞy

r0ðIn � PiÞx
ob; i ¼ 1; . . . ; n!� 1

����� �
.

Considering the subset of confidence limits generated by simple permutation matrices, where only two
elements are permuted, amounts to Theil’s inference with confidence limits as in (14). However, this does not
produce a uniform distribution because simple permutations do not form a group. Consideration of all
9Bekker (2002) explores a special case (rotation invariance) of the present general group-invariance framework, in a single parameter

linear model, given groupwise (hence, partial rotation invariance) heteroscedastic Gaussian innovations.
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possible permutations results in the monotonic ‘assumption-equivalent’ inference presented here, i.e.
F ðb0Þ�UðUÞ, and is more precise since it extends Theil’s original results and produces additional exact
confidence limits based on the same assumption.

4. Inference based on a single instrument

We now discuss assumption-equivalent inference based on a single instrument z, where � satisfies a group-
invariance assumption conditional on z, and the inferential function is gð�Þ ¼ z0� ¼ z0ðy� xb0Þ. First, we
consider monotonic inference. Subsequently, nonmonotonic inference and the relation between identification
and bounded confidence sets will be considered, as well as the coverage probability conditional on their
boundedness.

4.1. Monotonic instruments

The instrument z is said to be monotonic with respect to x and the group P if z0ðIn � PÞx40 a.s. for P 2 P,
and PaIn. In that case, inference based on F ðb0Þ�UðUÞ, where

F ðbÞ ¼ # i
z0ðIn � PiÞy

z0ðIn � PiÞx
ob; i ¼ 1; . . . ;N

����� �
(15)

will be monotonic. Note that, for the permutation group, the rank numbers of the elements of z and x should
be the same. An example was given in the previous section, related to Theil’s inference, where the rank
numbers themselves formed the instrument. For the reflection group, the signs of the elements of z should be
the same as those of x. For the permutation-reflection group, the rank numbers and their signs should be the
same. Finally, the rotation group requires a monotonic instrument to be a scalar multiple of x.10 These
requirements may seem to be quite restrictive. However, the restrictions can be relaxed by considering
subgroups. For instance, for stratified data, where a permutation-invariance assumption applies to the
strata, a monotonic instrument should have the same ordering as x only within strata. Exact inference
based on monotonic instruments with respect to a stratified rotational-invariance assumption is described in
Bekker (2002).

4.2. Nonmonotonic instruments

In general, an instrument z need not be monotonic. The analysis is based on F ðb0Þ�UðUÞ, where instead of
(15) we now have

F ðbÞ ¼ # i
z0ðIn � PiÞy

z0ðIn � PiÞx
ob; z0ðIn � PiÞx40

����� �
þ # i

z0ðIn � PiÞy

z0ðIn � PiÞx
4b; z0ðIn � PiÞxo0

����� �
þ #fijz0ðIn � PiÞyo0; z0ðIn � PiÞx ¼ 0g. ð16Þ

We only consider cases where N0 � #fijz0ðIn � PiÞx ¼ 0g ¼ 0. Then F ðbÞ consists of two terms,
F ðbÞ ¼ FþðbÞ þ F�ðbÞ, say, where FþðbÞ and F�ðbÞ are based on Nþ and N� points, respectively, and Nþ �

#fijz0ðIn � PiÞx40g and N� � #fijz0ðIn � PiÞxo0g. Hence, N ¼ Nþ þN� and both FþðbÞ and F�ðbÞ are
monotonic step functions increasing from 0 to Nþ and decreasing from N� to 0, respectively. If Nþ40 and
N�40 with positive probability, the nice properties of monotonic inference described above are lost.
10For instance, z0ðIn � PiÞx40 for Pi 2 P (reflections) follows directly from In � Pi ¼ diagðc1; . . . ; cnÞ, ðcÞj 2 f0; 2g, cja0 for some j,

whereupon z0ðIn � PiÞx ¼
P

jðcÞjðzÞjðxÞj40 for all z, x, if and only if ðzÞj and ðxÞj have same sign, for all j. Moreover, for Pi 2 P

(rotations), a geometric argument may be used: z0ðIn � PiÞx40 as z0x4z0Pix as jzjjxj cos y4jzjjPixj cosf, where y and f are the angles

between z and x, and z and Pix, respectively. Hence, cos y4 cosf for all y;f if and only if cos y ¼ 1 (and y ¼ 0). Directly, z ¼ lx, l scalar.
The proof for P (permutations) is trivial.
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(i)
11S

Ple

Eco
The elementary confidence sets CðfigÞ, i ¼ 0; . . . ;N; will not form an ordered collection of convex sets.
Consequently, there is no exact one-sided inference.
(ii)
 Some sets CðfigÞ may be empty.

(iii)
 The two-sided confidence sets Sj, defined in (9), need not be symmetric.

(iv)
 The top of a P-plot, defined in (11), need not be a median-unbiased estimator of b0.

(v)
 The sets Sj may be unbounded for positive values of j with positive probability.
As a result of this nonmonotonicity, the interpretation of the exact confidence sets Sj is more complicated
than in the monotonic case. Fortunately, the sets Sj cannot be empty if N0 ¼ 0. Furthermore, the negative
effects of nonmonotonicity need not be severe, which holds in particular for large samples. Let the degree of

monotonicity be given by

dm �
1

N þ 1
ð1þ jNþ �N�jÞ ¼

1

N þ 1
ð1þ jF ð1Þ � F ð�1ÞjÞ ¼ 1� Pð
1Þ, (17)

which is a random variable distributed over values 1� aj, j ¼ 0; 1; . . .; and jpN=2, as defined in (10). If the
instrument z is monotonic, then dm ¼ 1 a.s. and inference is based on F ðbÞ ¼ FþðbÞ. If dm is not close to one,
the instrument might be called weak. In particular, the weakness of an instrument is related to unbounded
confidence sets Sj. The set Sj is bounded if and only if 
1eSj , which holds, using (12), if and only if
Pð
1Þoaj . Consequently, using (17), Sj is bounded if and only if 1� ajodm. So, dm is the smallest
confidence level for which Sj is unbounded.

The weakness of an instrument is related to the ‘first-stage regression’ x ¼ zpþ v. Without making any
assumptions in addition to the group-invariance assumptions about � ¼ y� xb, we may define, analogous to
F ðbÞ, Sj and PðbÞ,

FpðpÞ � # i
z0ðIn � PiÞx

z0ðIn � PiÞz
op; i ¼ 1; . . . ;N

����� �
, ð18Þ

Sp
j � fpjF

pðpÞ 2 fj; . . . ;N � jgg, ð19Þ

PpðpÞ � maxfajjp 2Sp
j ; j ¼ 0; . . . ;Ng ¼

N

N þ 1
1� 1�

2FpðpÞ
N

���� ����� �
, ð20Þ

respectively. As Fpð0Þ ¼ N�, we find Pð
1Þ ¼ Ppð0Þ. We have proved the following:

Proposition 3. The following statements are equivalent:

ðaÞ Sj is bounded ; ðbÞ 1� ajodm; ðcÞ 0eSp
j .

To illustrate a low degree of monotonicity, consider y ¼ xb0 þ �, where b0 ¼ 5, and x ¼ zp0 þ v, with
p0 ¼ 1. A sample n ¼ 100 was generated by vi ¼ �i ¼ ðw1 þ w2

2 þ 3Þ2i and zi ¼ j log jw3=w4jj, where for
i ¼ 1; . . . ; 100, w�iid Nð0; I4Þ. In order to make inferences about b0, based on y, x and z, we only make a
permutation-invariance assumption about �, conditional on z. Fig. 2 gives the F-plot of b based on 1000
random permutations. The degree of monotonicity was 0.53, which seems too low to make this inference
meaningful.

Fig. 3 gives a histogram of all 1000 confidence limits, based on the same data. It shows a bimodal
distribution, which is related to the bimodal distribution of the IV estimator11:

b̂IV ¼
Eðz0ðIn � PÞyjz; yÞ

Eðz0ðIn � PÞxjz; xÞ
¼

z0ðIn � inði0ninÞ
�1i0nÞy

z0ðIn � inði0ninÞ
�1i0nÞx

¼
z0ðIn � n�1ini0nÞy
z0ðIn � n�1ini0nÞx

,

where the expectation is over P 2 P. Contrary to the distribution of the exact IV-estimator, the distribution of
the confidence limits can be computed as a function of the data.
ee Nelson and Startz (1990a, b).
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Fig. 2. F-plot for b0 ¼ 5, n ¼ 100; dm ¼ 0:53 (F ðbÞ=N against b).

Fig. 3. Histogram of confidence limits: b0 ¼ 5, n ¼ 100; dm ¼ 0:53 (frequency of confidence limits against b).
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4.3. Bounded confidence sets and the power to reject underidentification

Dufour (1997) studies inference problems given ‘locally almost unidentified’ parameters, e.g. parameters
that are (nearly) not identified on certain subsets of the parameter space (see also references therein). These
problems often arise in econometrics, and result in subsets of observationally equivalent parameter values, for
instance when there are weak instruments. Dufour (1997) shows that the usual confidence sets for b must be
unbounded with probability greater than or equal to 1� a when the coefficients on the exogenous variables in
a standard structural model are rank-deficient. Confidence sets can also be empty. He interprets an empty
confidence set as a rejection of the model itself, e.g. due to overidentifying restrictions. An unbounded
confidence set for a structural coefficient suggests that the data may simply be uninformative about such
coefficients, and (Dufour, 1997, p. 1383) ‘the occurrence of such a set may be interpreted as a symptom of the
fact that the parameter cannot be precisely evaluated from the available data’.

Moreover, Kleibergen (2002) analyzes the Angrist and Krueger (1991) data set, and constructs 95%-
confidence sets for returns on education. For some specifications, he finds that the confidence set is
unbounded, which indicates that instruments are weak, and that the amount of information contained
therein is small (since the parameter can take any value, and so the confidence set contains all possible
values). However, for other model specifications, Kleibergen finds bounded 95%-confidence sets that seem
sensible—and this suggests that there is some information about returns to education in the instruments.
Unbounded confidence sets may then be seen as helping to distinguish between weak and informative
specifications.

A closely related paper is Zivot et al. (1998, especially Section 4), and we thank a referee for drawing our
attention to this. They link unboundedness of usual confidence sets with goodness-of-fit (e.g. F test) statistics
for the first-stage regression. In particular (Zivot et al., 1998, p. 1130), they show that the AR statistic is
unbounded whenever the F test on the first-stage regression is insignificant. However, Zivot et al.’s (1998)
treatment assumes normality of errors, as opposed to the weak assumptions made here.

If only ‘informative’ (about b0), i.e. bounded, confidence sets Sj are considered, their confidence level
should be corrected for the probability of being bounded. That is, if the ð1� aÞ-confidence set Sj is bounded
with probability pa ¼ ProbðSj is boundedÞ, then a lower bound for the coverage probability, conditional on
the boundedness of Sj, is given by

Probðb0 2SjjSj is boundedÞ ¼ 1� Probðb0eSj and Sj is boundedÞ=pa

X1� aj=pa. ð21Þ

Consequently, pa is a relevant quantity for assessing the quality of inferences about b0. The probability of the
event in Proposition 3 equals pa by definition. Clearly, making inferences about pa amounts to making
assumptions about x, which is the same as making assumptions about the variables in the ‘first-stage
regression’, in addition to the group-invariance assumptions imposed on �.

First, consider a simple assumption that states that x is a function of z. In that case, where we condition on
z, N� is not random and pa equals either 1 or 0. So, there is no need to correct the confidence levels of sets Sj

due to their boundedness. A special case is given by linear regression, where pa ¼ 1 if and only if aj40. Other
assumptions describe x as a random vector conditional on z. This may affect the identifiability of b0, and thus
(cf. Dufour, 1997) it may affect inference on b0. In particular, consider group-invariance assumptions about
the ‘first-stage regression’, x ¼ zp0 þ v, such that the conditional distribution of v is not affected by linear
transformations Pv, where P 2 P. This assumption excludes cases where the ‘first-stage regression’ is not
necessarily linear (see e.g. Bekker, 1994).12 Assumption-equivalent inference then amounts to Fpðp0Þ�UðUÞ,
where FpðpÞ is given in (18).

The first point to note is that b0 may not be identified. In other words, the group-invariance assumption
made about y� xb0, conditional on z, may hold for any scalar b0. In that case, the group invariance must also
hold for the distribution of x. That is, x does not depend on z: p ¼ 0. As a result, both Fpð0Þ and dm, which
equals 1� Ppð0Þ, will be uniformly distributed. Consequently, the probability of the event in Proposition 3
12Note that the group-invariance assumptions about � and v relate to their marginal distributions. A stronger assumption would be to

assume such invariance with respect to Pð�; vÞ, P 2 P.
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Fig. 4. P-plot for b0 ¼ 0;p0 ¼ 0:1; n ¼ 500 (PðbÞ against b).
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equals aj. Hence pa ¼ aj, and the lower bound (21) for the level of bounded confidence sets is not informative:
1� aj=pa ¼ 0. Furthermore, a ð1� ajÞ-confidence set Sj will be bounded with probability aj, j ¼ 0; 1; . . .; and
jpN=2.

The null hypothesis of underidentification of b, i.e. H0: p ¼ p0 ¼ 0, may be rejected with significance
level aj , if the ð1� ajÞ-confidence set Sj is bounded. Following rejection, inferences about b0 might
be formulated based on bounded confidence sets, whose levels have been conditioned on their boundedness.
If pa is computed under the alternative hypothesis Ha: p ¼ pa, it equals the power of this test of
underidentification.

Conditional on an equivalence class Cv ¼ fPvjP 2 Pg; and given pa, this power can be computed by
recognizing that, conditional on Cv, x is distributed uniformly over the vectors zpa þ Piðx� zpaÞ, i ¼ 0; . . . ;N.
The choice i ¼ 0 produces x, based on which N� and dm have been computed. The choices i ¼ 1; . . . ;N
produce alternatives for x, and hence for N� and dm. Thus, the distribution of dm, conditional on Cv, is
generated. The power pajCv

, say, conditional on Cv, is then found as the proportion of values dm that
are larger than 1� aj. Of course, the true value p0 would be unknown. Fortunately, we have a median-
unbiased estimator for p0 given visually by the P-plot. Using this estimator, instead of the true value,
provides an estimator for pajCv

that is likely to have a very small median bias in relevant cases, where dm is
close to one.

As a numerical example, artificial data were sampled in a similar manner to Kleibergen (2002). That is,
y ¼ xb0 þ � and x ¼ zp0 þ v, where b0 ¼ 0 and p ¼ 0:1. The disturbances �i and vi have standard Gaussian
distributions with a correlation equal to 0.99, and for i ¼ 1; . . . ; n; the draws are independent; and n ¼ 500. We
assume permutation invariance of � conditional on z. Figs. 4 and 5 display, with restricted domain, the P-plots
PðbÞ and PpðpÞ, based on 1000 random permutations. Here we find dm ¼ 0:98 ¼ 1� Ppð0Þ and the 95%-
confidence set is indeed bounded, as indicated by the dotted line.

We also assume permutation invariance of v conditional on z. To verify that the probability of an
unbounded 95%-confidence set is small, we computed the quantity p0:05jCx�xp̂

¼ Probðdm40:95jCx�zp̂Þ ¼ 0:6,
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Fig. 5. P-plot for p0 ¼ 0:1; n ¼ 500 (PpðpÞ against p).
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where bp ¼ 0:11 is the median-unbiased estimator for p, i.e. the value for which PpðpÞ is maximal. So, the
confidence level of the ‘95%-confidence set’ needs to be corrected for the probability of being bounded. The
corrected confidence level is approximately bounded by 1� 0:05=0:60 ¼ 0:92.13
4.4. Nonlinear inferential functions

Instead of using a linear inferential function given by gð�Þ ¼ z0�, which produces exact inference
F ðb0Þ�UðUÞ; with F ðbÞ as given in (16), other functions could be considered as well. In particular, if the
distribution of the disturbances has heavy tails it might be useful to choose, for example, gð�Þ ¼ z0r�, where r�
contains the rank numbers of �. In that case, when Condition 1 is satisfied, we still find Pð
1Þ ¼ Ppð0Þ if Ppð0Þ
is computed based on a similar inferential function given by gpðvÞ ¼ z0rv. If p ¼ 0 can be rejected with more
power based on this alternative inferential function, the confidence sets for b will be bounded with higher
probability. Also note that in these cases the inference is based on a grid of values of b, although the reference
set Rðz0ry�xbÞ does not depend upon b.

If this approach is used in the numerical example of the previous section, there is no improvement
due to the Gaussianity of the disturbances. However, if data are collected in a similar manner to the
example used for Fig. 2, there is a considerable improvement. As an example, consider inference on b0,
where y ¼ xb0 þ � and x ¼ zp0 þ v. The data are based on n ¼ 1000 draws from the same model that
was used for Fig. 2, where n ¼ 100. Again, we assume permutation invariance of � conditional on z. Figs. 6
and 7 give the P-plots PðbÞ and PpðpÞ, based on 1000 random permutations, both for the linear inferential
function used earlier, and for the inferential function based on the rank numbers of �. The improvement is
striking.14
13If exact probabilities pa are computed based on full knowledge of the data generating process, we find p0:05jCx�zp0
¼ 0:51 and

p0:05jz ¼ 0:62.
14Here we find that dm ¼ 0:98; and Probðdm40:95jCx�zp̂Þ ¼ 0:6.
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Fig. 6. P-plot for b0 ¼ 5;p0 ¼ 1; n ¼ 1000 (PðbÞ against b). Solid line: inference based on ranks. Dashed line: linear inferential function.

Fig. 7. P-plot for p0 ¼ 1; n ¼ 1000 (PpðpÞ against p). Solid line: inference based on ranks. Dashed line: linear inferential function.
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5. Assumption-equivalent inference and multiple instruments

This section considers inference based on multiple instruments. Assumption-equivalent inference is
formulated in terms of joint confidence sets, which will be used to formulate conservative confidence intervals
for separate elements of the parameter vector.

5.1. AR-type confidence sets

First, we consider quadratic inferential functions gð�Þ ¼ �0Q�, where Q is a function of a matrix of
instruments Z. To formulate invariance assumptions, we consider subgroups of the permutation-reflection
group that satisfy Condition 1. Note that the reflection group contains too many elements, since gð�Þ ¼ gð��Þ.
However, reflecting only n� 1 elements may provide a suitable subgroup P; for which all elements of the
reference set Rðgð�ÞÞ are different a.s.

Assumption-equivalent inference on b0 amounts to F ðb0Þ�UðUÞ, with � ¼ f ðy;X ; b0Þ and

F ðbÞ ¼ #fPj�0Q�o�0P0QP�;P 2 Pg. (22)

In particular, we consider matrices Q such that relevant confidence sets are given by Hj ¼ CðVÞ, as in (3),
where V ¼ fj; . . . ;Ng.

In the context of the linear model, where � ¼ y� Xb0, an intuitively appealing choice for Q would be
Q ¼ PZ ¼ ZðZ0ZÞ�1Z. We assume the matrix ðy;X Þ0P0ðIn � PZÞPðy;X Þ has full rank for P 2 P a.s. Then, the
same function F ðbÞ is found a.s. for the inferential function given by

gð�Þ ¼
�0PZ�

�0ðIn � PZÞ�
. (23)

Alternatively, in the presence of heavy tails, one might consider using the rank numbers r� instead of �.
If the matrix ðy;X Þ0PZðy;X Þ has full rank a.s., then gðy� XbÞ has a positive minimum and a finite

maximum a.s. As a result, elementary confidence sets CðfigÞ may be empty for small and large values of i ¼ 0,
1; . . . ;N. Consequently, confidence sets Hj may be empty or unbounded for values j40. For the just-
identified case, where the matrix ðy;X Þ0PZðy;X Þ has a one-dimensional null space, the minimum of gðy� XbÞ
equals zero. In that case, confidence sets Hj can be unbounded, but they cannot be empty. Furthermore, for
finite groups, the construction of confidence sets is a matter of trial and error: b 2Hj if F ðbÞ 2 fj; . . . ;Ng.

The computation of confidence sets Hj is easier for the infinite rotation group than it is for the finite
permutation-reflection group. That is, for the rotation group, the reference set Rðgðy� XbÞÞ does not depend
on y, X or b:15 When multiplied by ðn� trðPZÞÞ=trðPZÞ, the reference set has an F-distribution with trðPZÞ and
n� trðPZÞ degrees of freedom.

If b0 refers only to the coefficients of endogenous variables, i.e. � ¼ y� Xb0 � Z1g, then inference on b0 can
also be based on

gð�Þ ¼
�0PZ��

�0ðIn � PZÞ�
¼

�0PZ��

�0ðIn � PZ1
� PZ� Þ�

, (24)

where Z� ¼ ðIn � PZ1
ÞZ2 and Z ¼ ðZ1;Z2Þ. Note that gð�Þ ¼ gðy� Xb0Þ; and that the reference set Rðgðy�

Xb� Z1gÞÞ does not depend on y, b or g. Inference of this form, based on the rotation group, amounts to AR
confidence sets (cf. Anderson and Rubin, 1949; Bartlett, 1948), which are exact under normality. However,
contrary to the classical regression context, where Z2 ¼ X , the AR confidence sets need neither be bounded
nor convex, and they might be empty in case of overidentification.16
15This property is shared by the finite groups when rank numbers r� are used instead of �.
16This paper can be seen as complementary to recent work on similar tests in IV regression. For instance, Kleibergen’s (2002) K-statistic is

an alternative to the AR test. It is asymptotically pivotal, and converges uniformly in distribution to a w2 with d.g.f. equal to the number of

explanatory variables, and shows improved power properties over AR in the overidentified case. An inferential function analogous to the

K-statistic depends on both � and X. Instead of (23), we have gð�;X Þ ¼ �0P ~Z�=�
0ðIn � PZÞ�, with ~Z ¼ PZfX � ��0ðIn � PZÞX=�0ðIn � PZÞ�g.

Since X is not independent of �, it is not possible to describe the distribution of gð�;X Þ conditional on an equivalence class C�. IfP ¼ EðX jZÞ

were known then an equivalence class fPð�;V ÞjP 2 Pg could be used, where V ¼ X �ZP. In fact, Bekker and Kleibergen (2003) describe
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5.2. Group-invariance assumptions in a dynamic context

An example of exact inference in a dynamic context is discussed by Dufour and Kiviet (1998). Consider the
first-order autoregressive distributed lag model given by yt ¼ b0yt�1 þ x0tgþ �t, t ¼ 1; . . . ; n, where
��Nð0;s2InÞ, and xt contains strongly exogenous regressors. Let the regression equation in vector notation
be given by

y ¼ y�1b0 þ Z1gþ �. (25)

The ‘first-stage’ regression equation follows by recurrent substitution as

y�1 ¼ y0kðb0Þ þ Cðb0ÞZ1gþ Cðb0Þ�,

where

kðbÞ ¼

1

b

b2

..

.

bn�1

0BBBBBBB@

1CCCCCCCA; CðbÞ ¼

0 � � � 0

1 0 �

b 1 0 �

..

. . .
.

�

bn�1 . . . b 1 0

0BBBBBBB@

1CCCCCCCA.

Dufour and Kiviet (1998) assume that the distribution of � is known up to a scale factor. They base their
inference procedures on the more general model

y ¼ y�1b0 þ Zlþ �; (26)

Z ¼ ðZ1;Z2Þ,

Z2 ¼ ðkðb0Þ;Cðb0ÞZ1Þ,

where l ¼ ðg0; l2; l
0
3Þ
0. Eq. (26) reduces to (25) when l2 ¼ 0 and l3 ¼ 0. A monotonic transformation of the

likelihood-ratio statistic, under normality, for testing H0 : b ¼ b0, l2 ¼ 0 and l3 ¼ 0 is given by (cf. Dufour
and Kiviet, 1998, (2.25))

gð�Þ ¼
�0P ~Z

��

�0ðIn � P ~ZÞ�
¼

�0P ~Z
��

�0ðIn � PZ1
� P ~Z

� Þ�
¼
�0ðIn � PZ1

Þ�

�0ðIn � P ~ZÞ�
� 1; (27)

~Z ¼ ðZ1; ~Z2Þ,

~Z2 ¼ ðZ2;CðbÞ�Þ,
~Z
�
¼ ðIn � PZ1

Þ ~Z2.

We see that both ~Z and ~Z
�
depend on �, which is not problematic for generating the distribution of gð�Þ

conditional on equivalence classes—this observation follows as a consequence of the results of Dufour and
Kiviet (1998). Also, gð�Þ ¼ gðy� y�1b0Þ and so the reference set Rðgð�ÞÞ does not depend on � if P is the
rotation group. Thus, a rotation-invariance assumption about �, conditional on Z1, implies exact inference
F ðb0Þ�Uð½0; 1	Þ, where F ðbÞ is based on the inferential function given in (27).
(footnote continued)

bounds for the exact distribution of the K-statistic under Gaussianity where one of the bounds is found for P ¼ 0. Here, exact inference

based on group-invariance assumptions, such as the exchangeability of the rows of ð�;V Þ, can be formulated for the extreme case where

P ¼ 0. An alternative similar procedure was developed by Moreira (2003), and is exact under normality, with known covariance matrix.

When the error distribution is unknown, Moreira shows that modified versions of similar tests based on conditional distributions are

asymptotically similar under Staiger and Stock’s (1997) weak instrument asymptotics, and approximately similar in moderately-sized

samples. A conditional pseudo-likelihood ratio test is shown to have good power properties under weak identification. However, the K-

statistic and the conditional LR statistic have limiting w2 and nonstandard distributions, respectively, as opposed to the exact symmetry-based

procedures developed here.
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Nonparametric generalizations can now easily be formulated based on group-invariance assumptions
related to the finite permutation-reflection group. For first-order autoregressive distributed lag models,
inference can be based on (27). However, for these nonparametric generalizations the reference sets do
generally depend both on the data and on the full vector of regression coefficients. Alternatively, other
inferential functions could be considered where some, or all vectors � in (27) are replaced by rank numbers r�,
or some other function.

We might also consider formulating nonparametric estimators for b0. That is, if P is the rotation group, the
value b that maximizes F ðbÞ in (22), where Q ¼ PZ, is the limited information maximum likelihood (LIML)
estimator. Similar to the Hodges–Lehmann estimator, it is the value most supported by the confidence sets Rj,
j ¼ 0; 1; . . . ;N. As a nonparametric generalization of LIML, we might consider an element of the set that
maximizes (22) if P is not the rotation group. This approach can be applied to other cases as well, including
cases where rank numbers are used instead of �.
5.3. An application to nonlinear regression models

Inference of the form (22) is not restricted to linear models. For a nonlinear model we could use Q ¼ PZ,
where

Z ¼ qf ðy;X ; bÞ=qb0. (28)

As an example, consider the simple nonlinear regression model

yi ¼ b01x
b02
i þ �i; i ¼ 1; . . . ; n. (29)

Based on group-invariance assumptions, exact two-dimensional confidence sets follow from F ðb0Þ�UðUÞ,
where F ðbÞ and Z are given in (22) and (28), respectively. In particular, if the disturbances �i are independent
and symmetrically distributed conditional on x, we may consider the reflection subgroup with elements Pi,
i ¼ 0; . . . ; 2n�1 � 1, for which the first diagonal element equals one: Pi11 ¼ 1.
Fig. 8. Joint confidence sets for b01 ¼ 0:5, b02 ¼ 1; n ¼ 100; sizes: 0.99, 0.95, 0.5, 0.05 (b2 against b1).
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Consider data where the elements xi are independent and xi�w21; the elements �i are independent and
�i ¼ w3

i , with wi�ðUð½0; jx�i j	Þ � 0:5jx�i jÞ, i ¼ 1; . . . ; 100. So, there is both heteroscedasticity and non-
Gaussianity. Using an reflection-invariance assumption about �, conditional on x1; . . . ;x100, and based on a
501� 501 grid and 2500 random reflections, Fig. 8 gives exact joint confidence sets for b01 ¼ 0:5 and b02 ¼ 1.

Based on such joint confidence sets, conservative confidence intervals for a separate element b02, say, can be
bounded by the minimum and maximum of b2, over a sufficiently large grid, such that F ðbÞ 2 fj; . . . ;Ng.
However, it might be useful to consider different inferential functions gð�Þ for inferences on different
parameters.

Analogous to t-inference, which is based on rotational invariance, an inferential function of the form

gð�Þ ¼
z02ðIn � Pz1Þ�

ð�0ðIn � PZÞ�Þ
1=2

, (30)

might be useful to formulate inference on b02. When comparing conservative confidence intervals for b02;
based on joint confidence sets generated by (23) and (30), respectively, the latter may perform better.

Given the data used for Fig. 8, inference based on (30) and reflection invariance is displayed in Fig. 9.
Indeed, if b01 and b02 are known to be restricted to [0,1] and [0.6,1.6], respectively, a comparison of
conservative 95%-confidence sets for b02 in Fig. 8, [0.786,1.46], and Fig. 9, [0.850, 1.422], favours the latter.

6. Conclusion

The paper provides exact inference on the parameters of the functional form for a variety of econometric
models. The inference is based on mild symmetry assumptions about the distribution of disturbances. Exact
inference based on normality can be derived in a similar way. When applied to the linear model, the method
provides a unified approach to well-known parametric and nonparametric tests. Especially when asymptotic
methods break down, this new approach may be useful. For example, when sample sizes are small, when
distributions of disturbances or explanatory variables are heavy-tailed, or when parameter points are close to
underidentification, or when dynamic models are explosive, the proposed methods remain exact.
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Some special attention has been given to the relation between bounded confidence sets and the power to
reject a hypothesis of underidentification. When parameter points can be underidentified, exact confidence sets
will be unbounded with positive probability. Therefore, if the hypothesis of underidentification is rejected and
confidence sets are bounded, the coverage probability of confidence sets must be corrected for the probability
of being bounded. Our approach provides an estimate of such a correction of the nominal size.

This leaves open the question of optimality. Usually optimality is formulated in asymptotic terms. Not
infrequently this leads to ‘optimal’ inference that performs poorly in small samples. Whether or not it is
possible to formulate general guidelines for formulating inferential functions with desirable properties is a
matter for further research. We used intuitively motivated linear and quadratic functions, as well as functions
based on test statistics derived under normality. This does not exhaust all possibilities. In an example with
heavy-tailed distributed disturbances, inference based on rank numbers of the disturbances was shown to
greatly improve the quality of the inference when compared to a linear function of the disturbances.
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Appendix A

If F ðb0Þ�UðUÞ, where U ¼ f0; 1; . . . ;Ng, then exact inference can also be based on a random sample of M,
say, matrices P 2 P. Let FM ðbÞ indicate the function F when it is computed based on these M matrices instead
of the full group P. It will be shown that FM ðb0Þ�Uðf0; 1; . . . ;MgÞ if the sample is taken without replacement.
If the sample is taken with replacement, then ProbðF Mðb0Þ ¼ jÞ ¼ rj, where

rj ¼
1

ðN þ 1Þ

XN

k¼0

M

j

 !
ðk=NÞjð1� k=NÞM�j ; j ¼ 0; . . . ;M. (A1)

Let ai, i ¼ 1; . . . ;N, be random variables equal to either 1 or 0, and let the probability distribution of
PN

i¼1ai

over f0; . . . ;Ng be given by ðp0; . . . ; pNÞ
0
¼ p, say. Consider a random drawing a from fa1; . . . ; aNg; and let the

probability distribution of
PN

i¼1ai � a over f0; . . . ;N � 1g be given by ðq0; . . . ; qN�1Þ
0
¼ q, say. Then, for

j ¼ 0; . . . ;N � 1,

qj ¼ Prob a ¼ 0
XN

i¼1

ai

����� ¼ j

 !
pj þ Prob a ¼ 1

XN

i¼1

ai

����� ¼ j þ 1

 !
pjþ1

¼ ð1� j=NÞpj þ ððj þ 1Þ=NÞpjþ1.

Let

SN ¼ N�1

N 1

N � 1 2 ;

. .
. . .

.

; 2 N � 1

1 N

26666664

37777775,

then q ¼ SNp, which is the probability distribution of the sum of a random sample of size N � 1 taken without
replacement from fa1; . . . ; aNg. Similarly, for a random sample of size M, we find a probability distribution
given by SMþ1SMþ2 . . .SNp. Clearly this latter distribution is uniform if the distribution given by p is uniform.
In particular, let ai ¼ 1 if gð�ÞogðPi�Þ, and ai ¼ 0 otherwise, i ¼ 1; . . . ;N. Then SMþ1SMþ2 . . .SNp describes
the uniform distribution of FM ðb0Þ over f0; 1; . . . ;Mg when the sample is taken without replacement.
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Let the sum sM , say, of a random sample of size M taken with replacement from fa1; . . . ; aNg have a
probability distribution over f0; . . . ;Mg equal to ðr0; . . . ; rMÞ. Then, for j ¼ 1; . . . ;M,

rj ¼
XN

k¼0

Prob sm ¼ j
XN

i¼1

ai

����� ¼ k

 !
pk ¼

XN

k¼0

M

j

 !
ðk=NÞjð1� k=NÞM�jpk.

Consequently, if pk ¼ 1=ðN þ 1Þ, we find (A1).
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